2. Q: Using quadrat sampling data from the given table estimate:
- Population density
of each species
- Shannon-Weiner diversity index (H')
Species |
Quadrat
1 |
Quadrat
2 |
Quadrat
3 |
Quadrat
4 |
Quadrat
5 |
Total
(Σni) |
Species A |
5 |
4 |
3 |
2 |
6 |
20 |
Species B |
2 |
3 |
1 |
1 |
3 |
10 |
Species C |
0 |
1 |
2 |
0 |
1 |
4 |
Total |
7 |
8 |
6 |
3 |
10 |
34 |
SOLUTION:
Objective:
To estimate species-wise population
density and calculate biodiversity using the Shannon-Weiner diversity index
formula from quadrat data.
1.
Estimation of Population Density
Population Density = Total number of individuals of a species / Total
number of quadrats
Density of Species A = 20 / 5 = 4.0
Density of Species B = 10 / 5 = 2.0
Density of Species C = 4 / 5 = 0.8 2
2.
Shannon-Weiner Diversity Index (H')
Formula:
(H') Formula: H' = -SUM (p_i * ln p_i), where p_i = n_i / N
N = 34 (total individuals)
Step-by-Step
Calculation:
Species |
ni |
pi
= ni/N |
ln(pi) |
pi
× ln(pi) |
Species A |
20 |
20/34 ≈ 0.588 |
≈ -0.531 |
≈ -0.312 |
Species B |
10 |
10/34 ≈ 0.294 |
≈ -1.225 |
≈ -0.360 |
Species C |
4 |
4/34 ≈ 0.118 |
≈ -2.140 |
≈ -0.252 |
H′=−(−0.312−0.360−0.252)=0.924H' =
-(-0.312 - 0.360 - 0.252) = 0.924
Conclusion:
Species A is the most dominant with highest density. Shannon-Weiner
index (H' = 0.924) suggests a moderately diverse community. Density
tells how many individuals of a species occur per unit area. H' Index
quantifies species richness and evenness — higher values mean more diversity.
0 Comments